
A Reality of “Grid” Computing
–SamGridSamGrid––

Adam Lyon
(Fermilab Computing Division and DØ Experiment)

GridKa School’04
September, 2004

Outline
• Introduction
• Use Cases
• Deployment & Usage
• Implementation
• Operations, Monitoring, & Testing
• The Future



2A. Lyon (GridKa School, 2004)

Detector (DØ) Tape Storage Compute Farm

Data at an HEP Experiment

 Collect data
 Reconstruct
 Skim

 Analyze
 Re-reconstruct
 Produce Monte Carlo



3A. Lyon (GridKa School, 2004)

Then and now
 For Run I at DØ

[1991–1997]:
 Collected about 200 pb-1 of

data
 Amounted to 60 TB total (all

forms of data)
 “Thumbnail” version of

entire data lived on disk
 Almost all processing was

done at Fermilab

 For Run II at DØ [2000-]:
  We have collected 470 pb-1

so far (hope to get
4-8 fb-1 by the end of the run)

 We collect ~1 TB of raw data
per day

 We have saved 0.75
Petabytes to tape (expect 10-
20+ PB)

 Need to do re-reconstruction
and analyses at remote
locations

 DØ reads the equivalent of
Run 1 data every 11 days
and writes Run 1 every 2
months



4A. Lyon (GridKa School, 2004)

What do we need?
 Don’t want to know the details

[where files sit, where jobs
run] (transparent)

 Find data easily (query tools)

Solution…
 An integrated data

handling and job
management system

 A GRID
 SSamGridamGrid

 SamGrid = SAM + JIM

 Enormous amounts of data
need to be transferred for
different activities (scalable)

 … sometimes over large
distances and with non-fault
tolerant hardware (robust)

 Knowledge of what we are
doing and what we did
(monitoring and bookkeeping)

 Use our limited resources
effectively both at home and
away (efficient)



5A. Lyon (GridKa School, 2004)

What can SamGrid do?
 SAMGrid manages file storage (replica catalogs)

 Data files are stored in tape systems at Fermilab and elsewhere. Files are
cached around the world for fast access

 SAMGrid manages file delivery
 Users at Fermilab and remote sites retrieve files out of file storage. SAMGrid

handles caching for efficiency
 You don't care about file locations

 SAMGrid manages file metadata cataloging
 SAMGrid DB holds metadata for each file. You don't need to know the file

names to get data

 SAMGrid manages analysis bookkeeping
 SAMGrid remembers what files you ran over, what files you processed

successfully, what applications you ran, when you ran them and where

 SAMGrid manages jobs
 Choose execution site, deliver job and its needed data, store output



6A. Lyon (GridKa School, 2004)

SamGrid Buzzword Glossary
 Dataset: metadata description

which is resolved through a
catalog query to file list.
Datasets are named.
Examples: (syntax not exact)
 data_type physics  and

run_number 78904 and
data_tier raw

 request_id 5879 and
data_tier thumbnail

 Snapshot: The list of files that
satisfy the Dataset query at a
particular time (e.g. start of the
project)

 Process: User application (one
or many exe instances)
Examples: script to copy files;
reconstruction job

A project runs on a station and
requests delivery of a dataset
snapshot to one or more
processes on that station.

 Project: Run an application
over data

 Station:
 Has processing power
 Has disk cache
 Can connect to outside

world (for file transfers and
DB access)

 Examples: Linux analysis
cluster at DØ, GridKa’s farm



7A. Lyon (GridKa School, 2004)

Sample Use Cases
I. Add Raw Detector Data to SamGrid

II. Process Unskimmed Collider Data

III. Process Skimmed Collider Data

IV. Process Missed/New Data

V. Monte Carlo Production

VI. Process Simulated Data



8A. Lyon (GridKa School, 2004)

I. Add Raw Detector Data to SamGrid
 Raw data collected into files by online detector

DAQ
 Online system creates metadata for files

Run #
Start time/end time
Event catalog (triggers)
Luminosity info

 Online SamGrid station system submits files
to SamGrid

 SamGrid stores files onto permanent storage
and saves metadata to database



9A. Lyon (GridKa School, 2004)

II. Process Unskimmed Collider Data
 Reconstruct raw data (production)

 Process the direct output of production
 Skimming
 Re-reconstruction

 User defines dataset by describing files of interest (not
listing file names) using SamGrid command-line or GUI
 data_tier thumbnail and version p14.06.01 and

run_type physics and run_qual_group MUO and run_quality GOOD

 User submits project to SamGrid station (two ways)
1. User selects station and submits with experiment’s tools
2. User submits to SamGrid, SamGrid job management chooses

station (execution site) and manages project



10A. Lyon (GridKa School, 2004)

III. Process Skimmed Collider Data
 Someone (a Physics group, the Common

Skimming Group, or an individual) has
produced skimmed files

 They created a dataset that describes these files
 You...

Submit project using their dataset name OR
Create a new dataset based on theirs and adding

additional constraints
__set__ DiElectronSkim and run_number 168339

 Submission is same



11A. Lyon (GridKa School, 2004)

IV. Process Missed/New Data
 The set of files that satisfy the dataset query at

a given time is a snapshot and is remembered
with the SamGrid project information

 One can make new datasets with:
Files that satisfy a dataset but are newer than the

snapshot (new since the last project ran)
Files that should have been processed by the

original project but were not consumed
__set__ myDataSet minus

(project_name myProject and
  consumed_status consumed and consumer lyon)



12A. Lyon (GridKa School, 2004)

V. Monte Carlo Production
 Physics group submits a SamGrid Request for

MC production, giving parameters. SamGrid
assigns a Request Id.

 SamGrid chooses execution site
 Workflow manager (Runjob) oversees

production (event generator, simulator,
reconstruction)

 SamGrid launches job to merge output files
and submit them into SamGrid catalog and
storage



13A. Lyon (GridKa School, 2004)

VI. Process Simulated Data
 Look up simulation request with parameters of

interest
e.g. Request 5874 has top Monte Carlo generated using

Pythia with mt = 174 GeV/c2

 Define dataset (via command-line or GUI):
request_id 5874 and data_tier thumbnail

 Submit project



14A. Lyon (GridKa School, 2004)

SamGrid Deployment
 DØ

 SamGrid is THE data handling system. Has been in production for five
years. 45 active SamGrid stations deployed worldwide (including
GridKa)

 Moving to SamGrid’s automated job management system
(10 execution sites so far)

 CDF
 Completing testing and migration to SamGrid for data handling in

production
 Large analysis station at FNAL, 8 major remote stations (Italy, GridKa,

Taiwan, Toronto, …)

 MINOS
 Initial deployment underway

 US-CMS
 Using SamGrid metadata catalog components for proof-of-principle



15A. Lyon (GridKa School, 2004)

SamGrid Statistics (8/2003-8/2004)
File delivery and consumption

 DØ (production):

 CDF (testing and initial production):
 Total: 1.5 PB, 12B events
 GridKa largest  offsite SAM consumer
 Can reach peak of 25 TB/day at FNAL

# Events (B)Terabytes# files (K)

1.647100GridKa
3.8142500Remote

48.020004000Total



16A. Lyon (GridKa School, 2004)

DØ SamGrid File Delivery  (Files delivered by month)

1999 2000 2001 2002 2003

R
un

 II
 B

eg
in

s



17A. Lyon (GridKa School, 2004)

DØ Monte Carlo Production (all remote)



18A. Lyon (GridKa School, 2004)

DØ Past Re-reprocessing



19A. Lyon (GridKa School, 2004)

Implementation of SamGrid
Overview
 Metadata

 Metadata is the conceptual glue for SamGrid
 Tight coupling

 Database
 Repository of metadata
 DBServers provide easy access

 Services
 Stations, stagers, workers, storage servers, submission sites,

execution sites

 Client Side
 The user experience



20A. Lyon (GridKa School, 2004)

The Glue: Metadata
 “SamGrid is a collection of services each of which is

described by metadata.” Metadata are interrelated.

Data Files

ProjectUser & 
Groups

 Compute
Farm Work Flow

Datasets  & 

Bookkeeping

Bookke
eping

Cache

Usa
ge

/O
wne

rs

Bookkeeping

O
rg

an
iza

tio
n

Q
uo

ta
s

State



21A. Lyon (GridKa School, 2004)

SamGrid Database
 DØ, CDF, and MINOS use the

same DB Schema shown here

 Relational
 Matches metadata

 Monolithic
 Interrelated information are

close by

 Flexible
 Schema updates are allowed,

but are carefully controlled

 Successful!
 In production use at DØ for

five years. It may look scary, but
it is well understood and it works!



22A. Lyon (GridKa School, 2004)

Data Files Metadata
 Data Files: The heart of

SamGrid
 Fixed metadata

 File name, size, crc
 Production group
 Data Tier (Raw,

Reconstructed, Thumbnail)
 Application
 Locations
 Detector Runs
 Event info
 Project/Process
 Luminosity
 Stream/Trigger

 Connection to free metadata
(Params) …



23A. Lyon (GridKa School, 2004)

Params (Free file metadata)
 Fixed metadata allows

easy and performant
querying

 Free metadata for
application specific
items
 Categories group

parameters
(pythia, isajet, …)

 Types are the keywords
(decayfile, topmass, …)

 Values
 Queries are more difficult



24A. Lyon (GridKa School, 2004)

Project Metadata
 Projects run on a

dataset Snapshot with
nodes from a SAMGrid
station

 A Project has one or
more Consumers
(usually one)

 A Consumer has one or
more Processes

 A Process is a job on a
node. Keeps track of
consumed files



25A. Lyon (GridKa School, 2004)

Database Details
 Centralized Oracle Database at FNAL

 Three tier system ensures DB integrity
(for all DBs at Fermilab)
Development - Newest schema with artificial or

special data. Used for testing
Integration - Test new schema with replica of

production data
Production - The real thing



26A. Lyon (GridKa School, 2004)

Central vs. Distributed DB Design
 Pros of Central

 Database software easier to write, manage, and control
 DB queries are simpler and more performant

 Cons of Central
 Single point of failure - all data handling can stop

• Hardware and network outages
• Need to apply updates (DØ mitigates with monthly down day)

 Perhaps too monolithic (station must access DB to discover its
cache disks)

 Future directions
 Information servers to remotely cache DB information
 Initiative with a small business to produce software to

transparently query distributed databases
 But I doubt we’ll split off much of the metadata



27A. Lyon (GridKa School, 2004)

DB Servers (Middleware)
 Clients do not connect directly to Oracle but

instead go through DB Server middleware
Use a CORBA Infrastructure

(standardize DB access)
Server written in Python
Client interfaces with Python and C++

 DBServer Improvements
Multithreading
Revamped CORBA Infrastructure



28A. Lyon (GridKa School, 2004)

DB Server Deployment

Oracle DB

User
Clients

dbserver

Remote
Stations
dbserver

FNAL
Analysis
Stations

FNAL
Reco
Farm

Remote
Stations

Reco
Farm

Analysis
Stations

Remote Fermilab



29A. Lyon (GridKa School, 2004)

SamGrid Data Handling Services

Head Node

Station Master

Worker node 1

Worker node 2

Cache

Cache

Stager

Stager

pmaster

DB

Many station configurations are possible



30A. Lyon (GridKa School, 2004)

SamGrid Data Handling Services
 Station Master

 Runs on head node, one instance, persistent, robust
 Coordinates file deliveries to compute farm
 Accesses the DB server

 Project Master
 Runs on head node (future distributed), one per project
 Coordinates file deliveries to running processes, tracks file

consumption

 Stager
 Runs on node with cache to manage those disks
 Clears old files if room is needed
 Initiates file transfers (use sam_cp, wrapper for rcp, grid-ftp)



31A. Lyon (GridKa School, 2004)

 Project can manage parallel processes
 Multiple processes (batch jobs) can pull files from the project’s dataset
 Files spread among processes evenly
 If a process dies, others pick up the slack

 File delivery both optimized and throttled for performance
 SamGrid tries to deliver files before the jobs need them (prefetching)

• File delivery can start before the processes start
• File delivery continues while processes are executing
• On FNAL analysis farm, 40% of time process did not need to wait for file

 Can set limits on simultaneous transfers
• Avoids overloading network

 Files may come from multiple sources and different transports
 Sources are tape systems (FNAL enstore), other stations, other worker cache

disks
 Transfers via grid-ftp, kerberized rcp, AFS, … (wrap with sam_cp)

Special features of Data Handling



32A. Lyon (GridKa School, 2004)

Job Information & Management
 Client “site”:

User writes JDL and submits job to SamGrid
User closes laptop (laptop only needs submission

client software) and gets on plane

 Submission Site:
Submission site calls on broker to determine

execution site (criteria: load, files in cache, …)
(Execution sites advertise classads, and connect

with SamGrid catalog)
Submission site transfers job to execution site,

job(s) enter local batch system



33A. Lyon (GridKa School, 2004)

Job Information & Management
 Execution site:

Submission site transfers bootstrap sandbox, is unpacked
on head node

 Jobs awaken, SamGrid transfers needed software to node
(samClient allows for SamGrid use on vanilla nodes)

 Jobs request data files from SamGrid and run
Result files stored back into SamGrid. Log files sent back

to submission site

 Client
User lands, opens laptop, retrieves logs from submission

site, gets result files out of SamGrid, discovers something
new!



34A. Lyon (GridKa School, 2004)

Job Management Details
 Grid (sites talking to each other)

 Control, monitor, and transfer of information between sites
 Uses standard grid tools (Globus: gridftp, gram, mds) and

Condor-g

 Fabric (collection of services and resources on site)
 Turned out managing the fabric was the real work for DØ
 Sandboxing, job driving, workflow, setting up application
 SamGrid uses a thick interface to weave the fabric (needs

knowledge of application, batch system, …)
 Thick interface can determine job status, even if job is

sleeping - useful for monitoring
 Perhaps this should have been experiment’s responsibility,

but…



35A. Lyon (GridKa School, 2004)

Monte Carlo Production via SamGrid
Automated Job Management



36A. Lyon (GridKa School, 2004)

User Experience
 Command line tools to query SamGrid services

 sam translate constraints --dim=“data_tier thumbnail”

 Dimension language to shield users from SQL
 Extensible, Improving

 Web interfaces
 DB queries
 Dataset creation

 Command line administrative tools



37A. Lyon (GridKa School, 2004)

Operations, Monitoring & Testing
 SamGrid shifters watch the system and respond to

users’ questions/requests
 Cover 18 hours per day
 Shifters in US, Canada, Europe, India, Brazil

 SamGrid experts at Fermilab rotate pager

 Local site SamGrid admins too

 Many tailored tools for monitoring

 Shifters and close monitoring beget much good will
from users



38A. Lyon (GridKa School, 2004)

Sam-At-A-Glance



39A. Lyon (GridKa School, 2004)

SamTV (DØ)
 Quickly check

health of
projects on
FNAL stations

 Can discover if
a station is
having delivery
problems

 Users can check
on the status of
their projects



40A. Lyon (GridKa School, 2004)

SamTV History



41A. Lyon (GridKa School, 2004)

Job Management Monitoring

 XMLDB

 Users
can
check on
job
progress



42A. Lyon (GridKa School, 2004)

Future of Monitoring
 Current SamTV parses log files

Fragile, hard to maintain

2nd generation monitoring in the works
 Monitoring and Information Service (MIS)

MIS server receives events from SamGrid services
via Corba (new project, open new file, delete file from cache)
or can pull information from service

MIS Backends process events: store in local DB, send
alert e-mail, update real time displays, export to other monioring
systems (MonaLisa)



43A. Lyon (GridKa School, 2004)

SamGrid + MonaLisa



44A. Lyon (GridKa School, 2004)

Test Harness
 Test Harness

Unit testing of services is not enough
• Must mimic loads of a production system

Performance and stress testing
• Discover problems, optimize performance

 Use a dedicated farm with SamGrid Test
Harness to load the system
Automatic tests with pass fail reports

• Check configuration of new installations

Stress the system and use monitoring for results



45A. Lyon (GridKa School, 2004)

Future of SamGrid
 Continuously refining our

system
 Adapting to needs of other

experiments
• Minos has two detectors

 Refactoring and improving
the implementation

 Adapting further to
standard Grid tools
 Writing SamGrid SRM

interfaces to access grid
storage elements

 Interface to standard
monitoring tools (but we
need our own specific ones
too)

 Moving to use of standard
VO authorization

 Open problems
 More advanced brokering

algorithms and scheduling
 VO Management - assign

roles and attributes to users;
finer grained security,
temporary special privileges

 Automatically resubmit
failed jobs (must be careful)



46A. Lyon (GridKa School, 2004)

Summary
 SamGrid is a large scale distributed system

integrating data delivery and job management
for the many Petabyte data size era

 Successfully being used at DØ and CDF, initial
deployment for MINOS. US-CMS investigating

 SamGrid continues to move into the Grid era



47A. Lyon (GridKa School, 2004)

EXTRA SLIDES
 Extra slides go here



48A. Lyon (GridKa School, 2004)

V. Re-reconstruction
 Reprocessing group submits projects to SamGrid.

SamGrid chooses execution site and launches
job(s)

 Jobs are run using RunJob, a work flow
management system (CMS & DØ)

 Code arrives to job(s) via SamGrid
 Data arrives to job(s) via SamGrid
 Output files are sent back to FNAL for merging

and storage back into SamGrid
(future - will do on remote site)



49A. Lyon (GridKa School, 2004)

Process Execution Times



50A. Lyon (GridKa School, 2004)

Failures
 On linux nodes, ~1% files are not sucessfully

consumed
Application crashes (pilot error)
IDE disk problems (must check CRC after each file

transfer)
Hardware failures
Temporary no access to certain tapes

 On SMP machine, failure rate is 0.1%
Hardware and disks are much more robust
People tend to run standard applications



51A. Lyon (GridKa School, 2004)

SamTV History



52A. Lyon (GridKa School, 2004)

Process Wait Times
 Time between

Request Next File and
Open File

 For CAB and CABSRV1
 50% of enstore transfers

occur within 10 minutes.
 75% within 20 minutes
 95% within 1 hour

 For CENTRAL-ANALYSIS and
CLUED0

 95% of enstore transfers
within 10 minutes

40%30%% no wait

CABSRV1CABStation



53A. Lyon (GridKa School, 2004)

SAMGrid Statistics - Usage Data

9000 Projects! 233 Different Users!

Data from early January 6 until February 24 at DØData from early January 6 until February 24 at DØ



54A. Lyon (GridKa School, 2004)

SAMGrid Statistics - Usage Data

~500K Files! ~1%



55A. Lyon (GridKa School, 2004)

SAMGrid Statistics - Usage Data

Raw

Thumbnails + …

256 TB!

8.3 Billion Events!

Data from early January 6 until February 24 at DØData from early January 6 until February 24 at DØ



56A. Lyon (GridKa School, 2004)

SAMGrid Statistics - Operations Data



57A. Lyon (GridKa School, 2004)

SAMGrid Statistics - Operations Data



58A. Lyon (GridKa School, 2004)

Stress Testing
 There are many station parameters to tune

Maximum parallel transfers
Maximum concurrent enstore requests
Configuration of cache disks
…

 We're moving away from d0mino to Linux
How robust are these linux machines?
How many projects can they run?
How many concurrent file transfers can they handle?

 Running test harness on a small cluster to explore
SAMGrid parameter space



59A. Lyon (GridKa School, 2004)

SAMGrid Stress Testing

max transfers =5 max transfers =1



60A. Lyon (GridKa School, 2004)

SAMGrid Stress Testing

max transfers =5 max transfers =1



61A. Lyon (GridKa School, 2004)

SAMGrid Stress Testing

max transfers =5 max transfers =1



62A. Lyon (GridKa School, 2004)

ENSTORE Statistics
 0.6 Petabytes in tape storage!

Data sizes

0 100 200 300

9940B

9940A

LTO

Terabytes

Tape usage

0 2000 4000 6000

9940B

9940A

LTO

# of tapes

Only 5 files unrecoverable (5 GB total;  8ppm loss)  !!!
One of them was RAW file



63A. Lyon (GridKa School, 2004)

Top Users (Jan 6, 2004 - Feb 24, 2004)

Top users by # of projects Top users by consumed files



64A. Lyon (GridKa School, 2004)

SAMGrid Statistics                 What are
people doing?

Not accurate since
users must fill in 
application manually
(and most don't)



65A. Lyon (GridKa School, 2004)

SAMGrid Statistics                      Process
wait times

Fi
le

 S
ou

rc
e



66A. Lyon (GridKa School, 2004)

Some SAMGrid buzzwords
 Dataset Definition

 A set of requirements to obtain a particular set of files
 e.g. data_tier thumbnail and run_number 181933
 Datasets can change over time

• More files that satisfy the dataset may be added to SAMGrid

 Snapshot
 The files that satisfy a dataset at a particular time (e.g. when you

start an analysis job)
 Snapshots are static

 Project
 The running of an executable over files in SAMGrid
 Consists of the dataset definition, the snapshot from that dataset

definition, and application information
 Bookkeeping data is kept - how many files did you successfully

process, where did your job run, how long did it take



67A. Lyon (GridKa School, 2004)

SAM-GRID Projects
 Active Subprojects: C++ API, DBServer, JIM, H

Stream Reco for CDF, Caching, Chains&Links, CDF
DFC, Test Harness, Linux deploy of DBServers,
Config Man

 Planned Subprojects: Request system, Autodest,
Further monitoring (MIS)

 Related Subprojects: d0tools, SBIR II, Condor mods,
workflow packages for CDF & D0, Authorization &
Accounting

 Recently completed Subprojects:  Python API, V5.1
Schema Design, Batch Adapter, D0 Online dcache
TDP, 1st Gen Monitoring Tools, Data Dimensions
Grammar



68A. Lyon (GridKa School, 2004)

DB Servers

SAMGrid DB Server Architecture

Client Server

User Code

C++

Python

Java

CORBA

Wrappers

C++

Python

Java

CORBA

Interfaces

IDL

CORBA

Wrappers

Python

CORBA Interface 

Implementation

Python

DB Derived

Classes

Python

Database

DB Dictionary

Files

Python

DB Server

Generator

Python

Generator 

Language 

Templates

Legend

Path to DB

Server Code

 C lient  Code

Generated Code

Common Code

 Generated Code (ORB )

 


